

The mystery of the vomiting cat: A granular analysis of splenic and hepatic nodules

Contributors

¹Theo Chenal, ²Yanad Abou-Monsef, ²Maxence Delverdier, ³Morgane Mantelli, ⁴Nathalie Bourges-Abella, ^{1,4}Anne Geffré, ^{1,5}Fanny Granat, ^{1,4}Catherine Trumel

¹ Laboratoire Central de Biologie Médicale, ENVT, France

²Unité d’Histologie et d’Anatomie pathologique– Ecole nationale vétérinaire de Toulouse

³InTheRes, Inrae, ENVT, Université de Toulouse, Toulouse, Occitanie, France

⁴CREFRE, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France

⁵CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, ENVT, Toulouse, France

Theo Chenal – theo.chenal@envt.fr

Specimen

Cytology of splenic and hepatic nodules

Signalment

3-year-old spayed female European shorthair cat

History

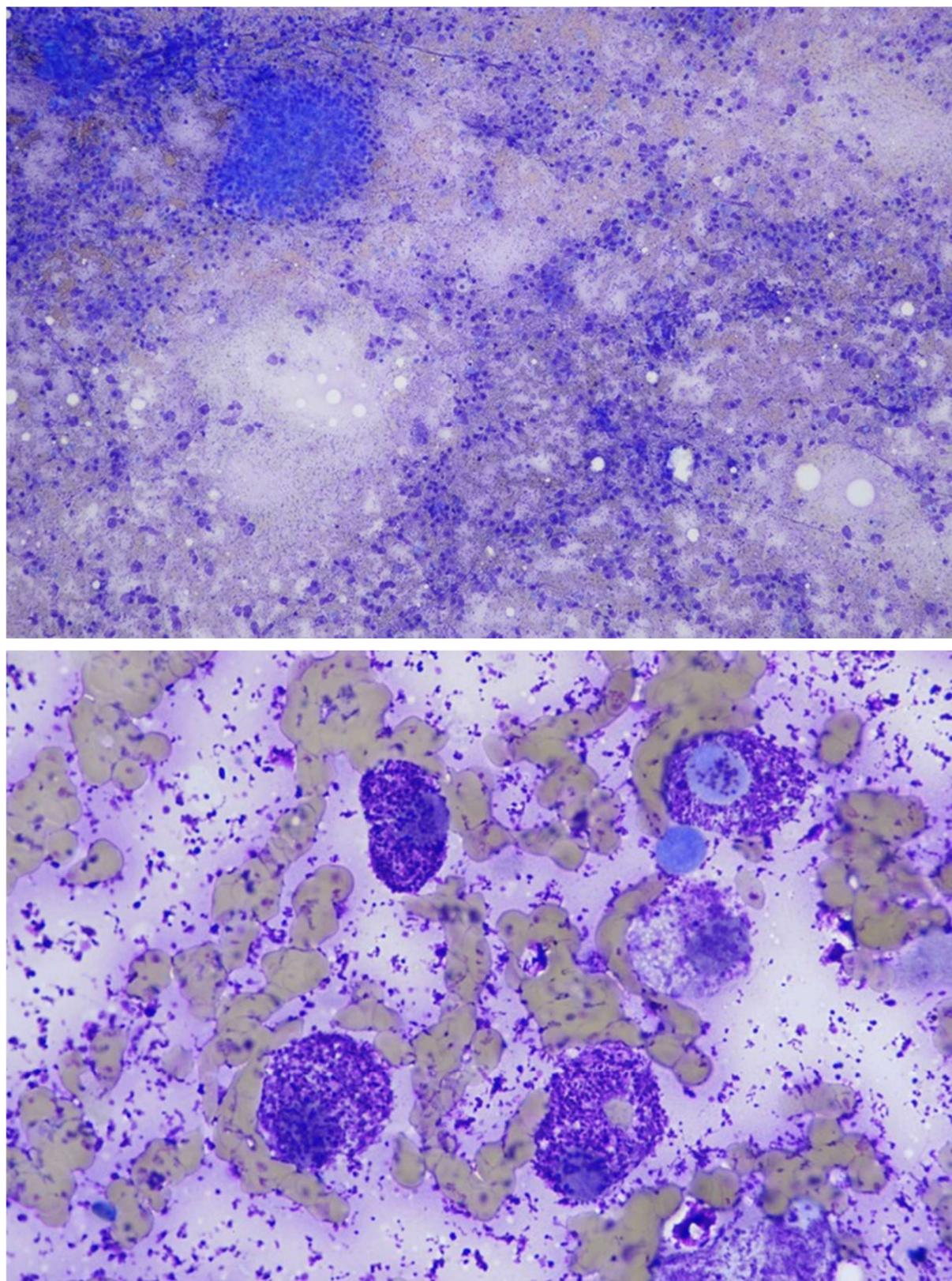
The cat was presented to the emergency unit at the veterinary teaching hospital of Toulouse, France, with a two-day history of anorexia and two episodes of vomiting.

Clinical findings

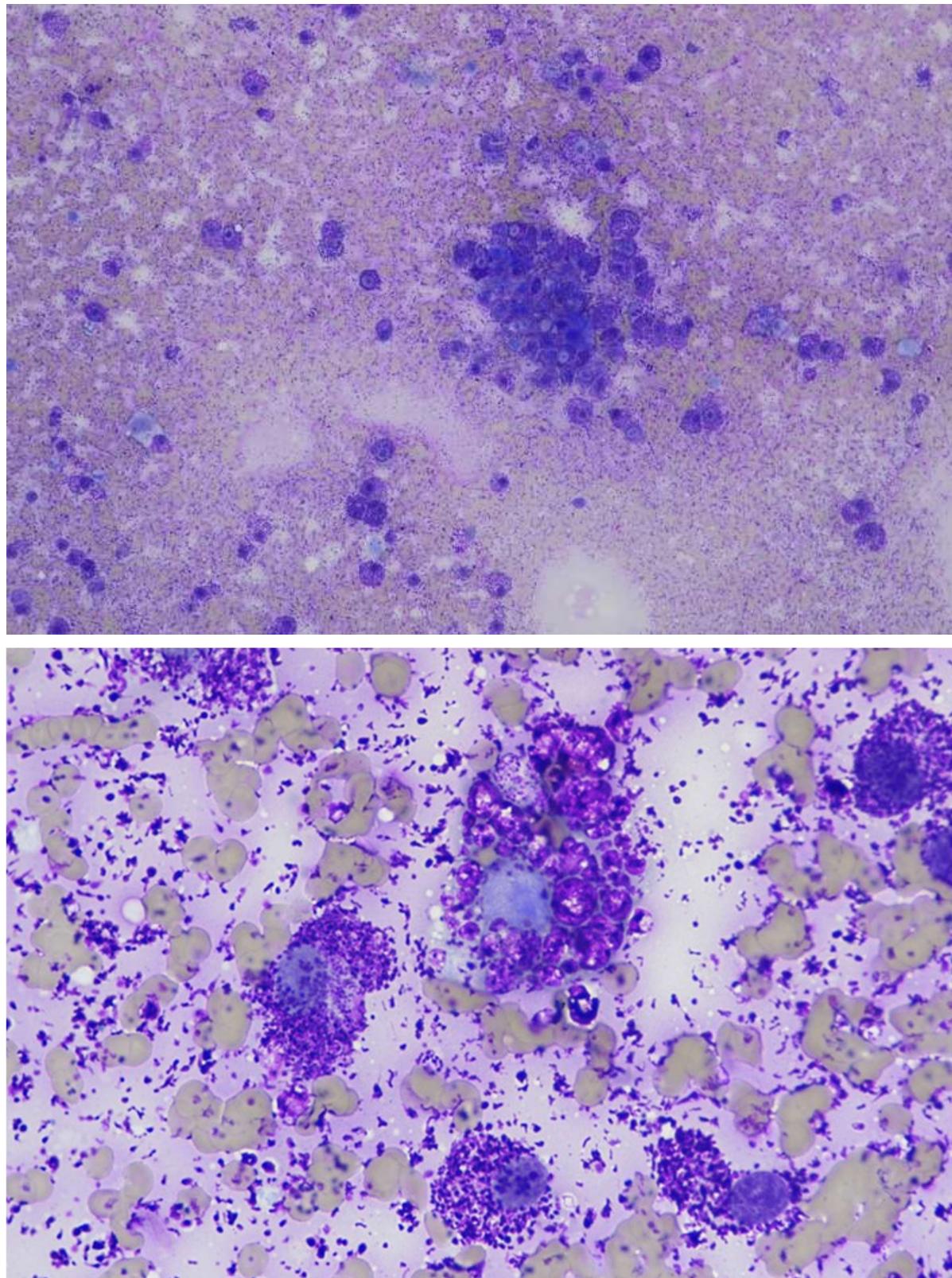
Clinical examination was unremarkable. A biochemistry panel revealed mild hyperproteinemia (93g/L [57-89]) and hyperglobulinemia (63 g/L [28-51]). A CBC showed eosinopenia (0.03x10⁹/L [0.17-1.57]).

Blood gas analysis revealed mild hypokalemia (3.2 mmol/L [3.5-4.8]), ionized hypocalcemia (1.09 mmol/L [1.10-1.33]) and moderate hypochloremia (95.6 mmol/L [116.0-126.0])

Thoracic X-ray was unremarkable. Abdominal ultrasound revealed multiple hepatic nodules (<20mm), a splenic nodule (17mm) and a round, nonobstructive intestinal mass (6mm), suggestive of multiple neoplastic processes.


The cat was sedated and fine needle aspiration of the splenic and hepatic nodules was performed. Samples were submitted to the laboratory for cytological interpretation (Figures 1 and 2).

Follow-up


Splenectomy was performed and the splenic nodule was submitted for histopathological analysis.

The cat showed clinical improvement following splenectomy; however, occasional vomiting persisted. A follow-up ultrasound performed 2-month after splenectomy revealed persistence of the previously observed hepatic nodules and a new 20mm nodule in the right medial liver lobe, a mild enlargement of the intestinal mass (6x7x9mm), and a hypertrophy of the ileo-caecal lymph node. A CBC revealed a moderate leukocytosis (22.7x10⁹/L [4.0-15.2]) and lymphocytosis (13.6x10⁹/L [1.2-10.2]) with a moderate number of reactive lymphocytes and very rare granulated cells (Figure 3).

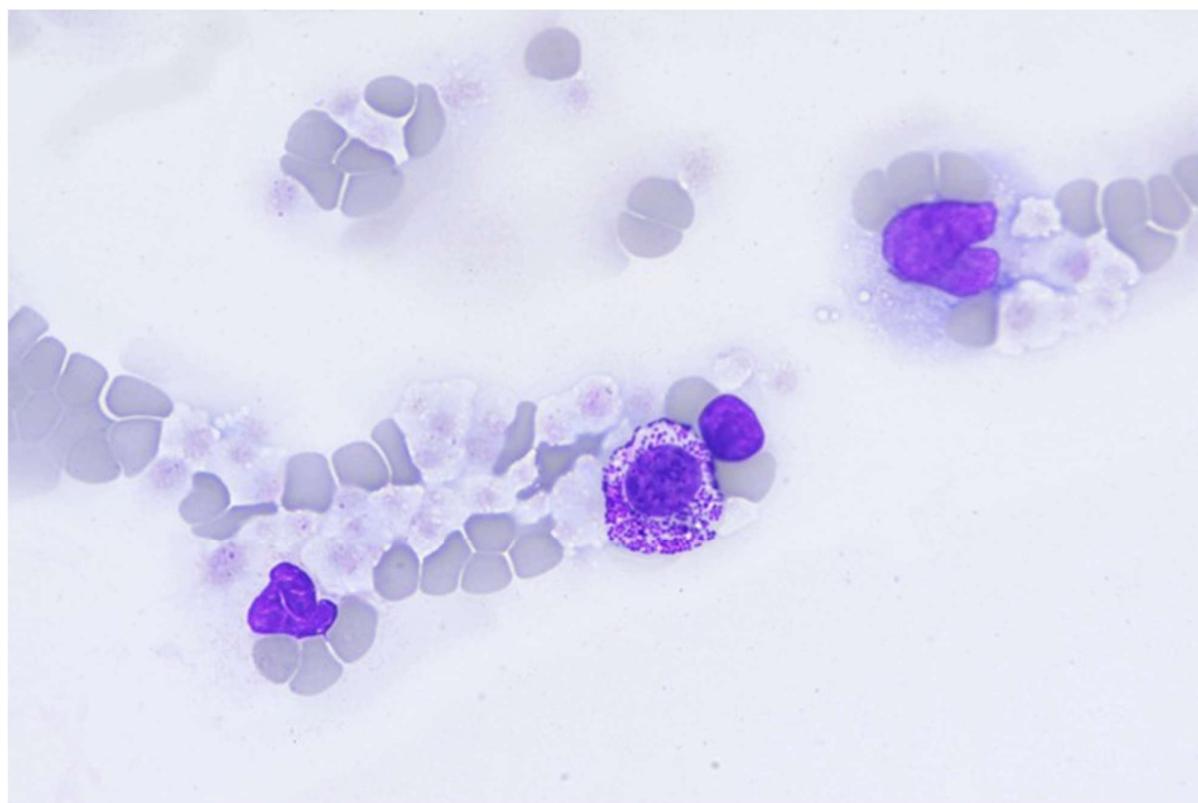

Figure 1. Cytology of the splenic nodule. May-Grunwald-Giemsa, original magnification x10 and x100 oil objectives, respectively

Figure 2: Cytology of one hepatic nodule. May-Grünwald-Giemsa, original magnification x20 and x100 oil objectives, respectively

Figure 3. Peripheral blood smear. May-Grünwald-Giemsa, original magnification x100 oil objective

Questions

- 1/ How would you describe the cytological samples (Figures 1 and 2)? What is the most probable diagnosis?**
- 2/ What would you recommend to confirm the diagnosis?**
- 3/ Identify the granulated cells on peripheral blood smear (Figure 3) and give the differential diagnosis.**

Interpretation/Diagnosis

Cytological examination of the splenic and hepatic nodules revealed numerous round to ovoid granulated cells, either free or arranged in large aggregates. The cytoplasm was abundant and contained numerous variably sized and shaped granules —ranging from round to slightly elongated—which stained purple to magenta. A large number of these granules were also present in the background. Microvacuoles were frequently observed in the cytoplasm, their number appearing inversely proportional to the quantity of granules. Nuclei were round and located paracentrally to eccentrically, with pale, loosely clumped chromatin. These cells exhibited moderate anisocytosis and anisokaryosis. Occasionally, a single erythrocyte was observed within the cytoplasm of these granulated cells (Figure 1). A few heterogenous aggregates —composed at least in part of altered or necrotic granulated cells— were also noted. In addition, a few larger cells with bigger and more heterogenous granules were observed (Figure 2); These were suspected to be either neoplastic cells or macrophages. In the liver samples, rare and small clusters of moderately atypical hepatocytes were observed. These showed multiple nucleoli (some large), along with moderate anisocytosis and anisokaryosis. Numerous granulated cells were also present.

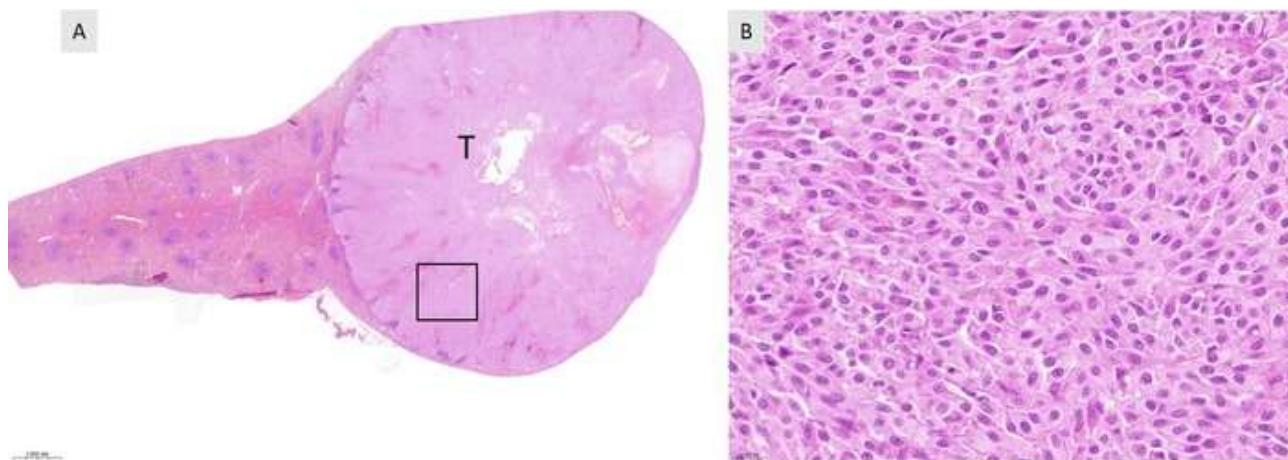
The most probable diagnosis was splenic and hepatic infiltration by a mast cell tumor.

A CBC performed one month after splenectomy revealed leukocytosis and lymphocytosis, which may have been related to adrenergic stress or antigenic stimulation. Very rare granulated cells were observed. These cells were large, round to columnar, with a moderate amount of cytoplasm containing numerous small purple to magenta granules. The nucleus was round with coarse chromatin and no visible nucleoli. The primary suspicion was circulating mast cells, most likely of neoplastic origin in this context, given the cytological findings in the spleen and liver.

Additional examination

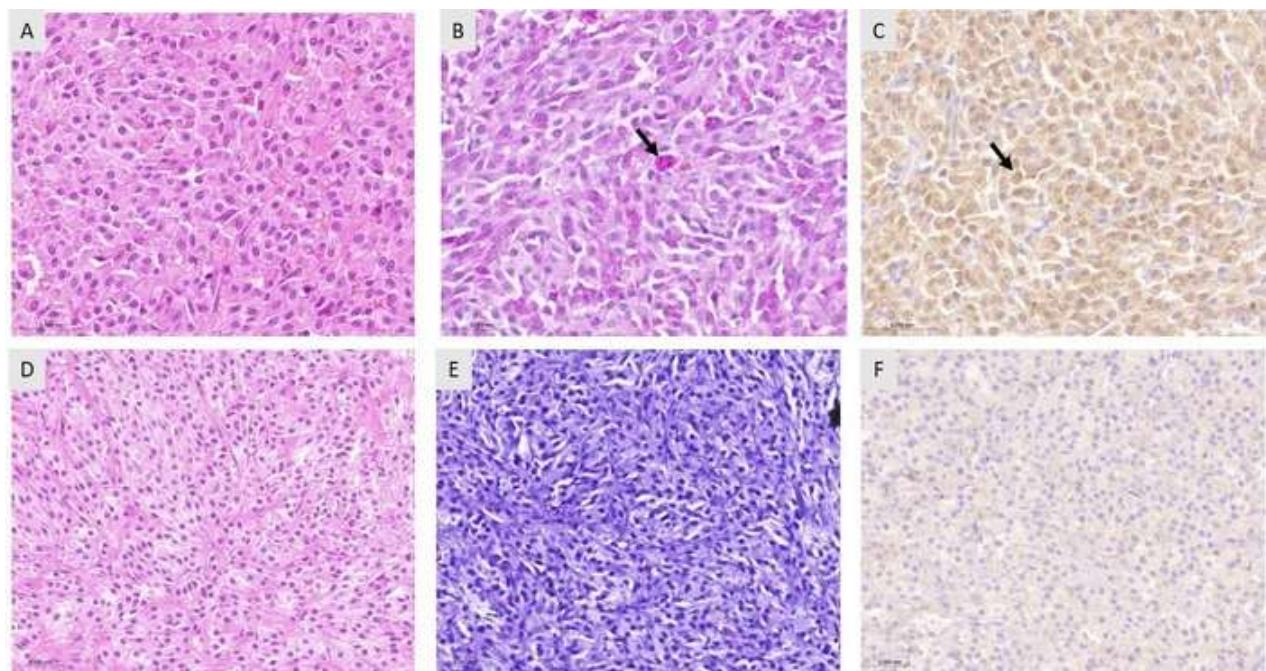
Histopathological examination of the splenic nodule revealed a 2cm nodule within the splenic parenchyma with expanding growth deforming the splenic capsule. The mass was densely cellular and composed of sheets of large, polygonal to spindle-shaped, cohesive, cells within a thin collagen stroma. The cytoplasm was pale eosinophilic, with a granular appearance and the nucleus was round to ovoid with clumped chromatin. The cells exhibited mild atypia and 2 mitosis per 2.37mm^2 were observed. Focal necrosis, focal haemorrhage with hemosiderophages and a moderate multifocal lymphocytic infiltrate were also observed (Figure 4).

The histological diagnosis revealed a neoplasm composed of granulated cells exhibiting both epithelioid and spindle cell morphology, consistent with either a gastrointestinal stromal tumor (GIST), a granular cell tumor or an atypical mast cell tumor.


To further characterize the tumor, additional histochemistry and immunohistochemistry were performed (Table 1, Figure 5). Neoplastic cells were negative for toluidine blue, c-kit and S-100, but positive for PAS (with few cells being diastase-resistant), vimentin and neuron specific enolase (NSE).

Final diagnosis was suggestive of a granular cell tumor, however, the possibility of an atypical mast cell tumor could not be entirely ruled out due to overlapping cytological features.

Based on the histological criteria established by Fanburg-Smith et al. (1998) to predict malignancy and prognosis in human granular cell tumours, the present case can be considered a malignant variant for meeting three of the proposed criteria: spindle cell morphology, pleomorphism and cell necrosis.¹


Figure 4. Histopathology of the splenic mass, H&E stain.

A, B: Relatively well demarcated tumor (T) composed of sheets and trabecules of polygonal to fusiform cells with an eosinophilic granular abundant cytoplasm and oval nuclei with finely stippled chromatin.

Figure 5. Histochemical and immunohistochemical stainings of the splenic mass.

A, B, C: Neoplastic cells of the same area showing PAS positive cytoplasmic reaction (B, arrow) and cytoplasmic expression of NSE antibody (C, arrow). D, E, F: Neoplastic cells of the same area negative for toluidine blue (E) and for c-kit antibody (F).

Follow-up and clinical outcome

After the last visit, the cat presented anorexia and multiple episodes of vomiting, and was presented at the emergency unit. POCUS revealed a thoracic effusion that was sampled and submitted to the laboratory for cytological evaluation. The effusion was consistent with a hemothorax, based on the bloody macroscopic appearance, a PCV equal to 19% and the presence of erythrophagocytosis images. Concurrent CBC showed a marked non-regenerative anemia (Ht 0.11L/L [0.30-0.54], Hgb 35.0g/L [94.1-161.4]) probably secondary to the hemothorax. Rare granulated cells were also observed on the peripheral blood smear.

A whole-blood compatible transfusion was performed, but the cat presented a cardio-respiratory failure the next day and reanimation was unsuccessful. A necropsy was proposed but refused by the owner.

Answers to questions

1/ How would you describe the cytological samples (Figures 1 and 2)? What is the most probable diagnosis?

See interpretation/diagnosis

2/ What would you recommend to confirm the diagnosis?

Although cytology is supportive of a mast cell tumor, histopathology with additional stain (eg. toluidine blue) can help confirm the diagnosis. Immunohistochemistry is rarely needed to confirm a diagnosis of mast cell tumor, but IHC panel could be done to exclude some tumors in specific atypical cases, including c-kit and CD25.²

3/ Identify the granulated cells on peripheral blood smear (Figure 3) and give the differential diagnosis.

The granulated cells on peripheral blood smear were mostly consistent with mast cells.

In cats, mastocytemia is most commonly associated with visceral and cutaneous mast cell tumors but has also been reported in lymphoid neoplasia, hemangiosarcoma and chronic kidney disease.³

Discussion

There is a limited number of tumors composed of granulated cells reported in the literature in cats and other species, including but not limited to: mast cell tumors, some types of lymphoma (including the large granular lymphocytes lymphoma subtype), granular cell tumors, oncocytomas, rhabdomyomas, carcinoids and some other neuroendocrine tumors, "globule leukocyte tumors", "granulated round cell tumors", and some variants of neoplasia usually not granulated such as histiocytic neoplasia, hemangiosarcoma, meningiomas, peripheral nerve sheath tumors, trichoblastoma and mesotheliomas.⁴⁻²²

Large granular lymphoma and mast cell tumors (MCT) are the most common neoplasia composed of granulated cells in cats, and are the only ones reported in the spleen and liver. The former was considered unlikely in our case based on the cell morphology including the size, and the large amount of cytoplasm filled with numerous small-medium sized granules at cytology.

Cytological examination led to a presumptive diagnosis of MCT, however, in our case, the cellular morphology and tissue organization observed on histopathology were not consistent with MCT, such as histochemistry and IHC. Granules were PAS positive and partly resistant to diastase as expected in MCT, but while mast cells are expected to be vimentin positive, they are not expected to be NSE positive.²³ Moreover, the absence of c-Kit expression and lack of metachromasia with toluidine blue further weakened this hypothesis —although such findings have been rarely reported in feline cases.^{2,24} Notably, unlike our case, mast cell tumors that fail to stain with toluidine blue typically also lack visible granules on H&E staining.²

Granular cell tumor (GCT) is a histopathological diagnosis based on morphology and has been reported in human and various animal species. The most consistent finding is a solid neoplasm composed of sheets and clusters of round to polyhedral, sometimes spindle-shaped cells with abundant cytoplasm filled with PAS positive (and usually diastase resistant) granules.^{4,25,26} Those tumors have been rarely reported in cats in tonsils, cerebrum, spinal dura, palate, and vulva, digit, and tongue.²⁶⁻³⁰ GCTs are the most common primary lung tumor in horses, often associated with hypertrophic osteopathy, and have also been reported in optic disc and bronchus in this species.^{25,30-39} In dogs there are several reports of GCTs in tongue, meninges, and cerebrum, and rare reports in the larynx, eyelid, pituitary gland, nerves, skin, lymph node, heart, pulmonary and visceral pleura, and mesentery.⁴⁰⁻⁵⁸ GCTs have also been described in the brain of rats and in various locations in exotic species, but have never been reported in the spleen or liver in animals.^{59,60}

The histogenesis of GCTs has not been clearly established and the term GCT probably encompasses tumors of various origin. In rats brain, GCTs are established as a distinct entity of meningeal or astrocytic origin, and in human, most GCTs are thought to originate from Schwann cells or their progenitors as most of these tumors react positively with antibodies against S-100 protein, NSE and vimentin although an epithelial or myogenic origin has been established in a minority of human GCTs.²⁶ In horses, GCTs are consistently positive for S-100 and vimentin, and variably positive for NSE and GFAP, which supports that neoplastic cells originate from Schwann cells.³⁰⁻³⁹ In dogs and cats, IHC patterns are variable (Table 1), nearly all GCTs are vimentin positive, most are S-100 and/or NSE positive, some are desmin or cytokeratin positive and all are chromogranin negative.^{26-30, 40-58} A neuro-ectodermal origin is suspected in most GCTs in those species based on tumor location and S-100 positivity, but various IHC patterns have been observed and could represent various histogenesis.

Table 1: Immunohistochemical profile of the splenic mass compared to reported feline GCT and the expected immunohistochemistry of feline MCT.

NA = Not assessed, + = positive reaction, - = negative reaction, +/- = inconsistent positive reaction

* = based on studies in dogs

Location	Spleen (current case)	Spinal dura ²⁹	Brain ²⁸	Tonsil ²⁷	Tongue, Vulva, Digit ³⁰	Palate ²⁶	MCT ^{2, 23, 61-64}
Toluidine Blue	-	NA	NA	NA	NA	NA	+
c-kit	-	NA	NA	NA	NA	NA	+
PAS	+	+	+	+-	+	+	+
PAS + diastase	+-	+	+	NA	+	+	NA
Vimentin	+	+	+	NA	+	-	+
NSE	+	+	-	-	-	-	NA
S100	-	+	+-	-	-	-	Variable* (mostly -)
Desmin	NA	+	NA	NA	-	-	-*
Electron microscopy	NA	NA	NA	Numerous laminated, round to oval, vesicular structures; smaller electron-dense amorphous granules	NA	0.1-0.7µm single membrane-bound granules of heterogenous electron density (some multivesicular)	Granules moderately electron dense (either homogenous or containing amorphous, very electron-dense areas of various sizes)

Electron microscopy has also been used as a diagnostic tool for GCTs, particularly for better characterising the granules, which are suspected to be lysosomes and phagolysosomes in GCTs and are mitochondria in oncocytomas and rhabdomyomas.⁶⁵ The expression of autophagy markers (LC3B, ubiquitin, p62, NBR1) in some equine pulmonary GCTs and lingual and intracranial canine GCTs also support this hypothesis.^{37,52,66}

The primary significance of this case lies in its distinctive features. To date, GCTs have not been reported in the spleen or liver of cats or other animal species, and only rarely in human.⁵⁷⁻⁶⁹ Moreover, in this case, cytological findings, when considered alongside the clinical and epidemiological context, initially supported a diagnosis of MCT. The presence of presumptive erythrophagocytosis—previously described in feline MCTs but not in GCTs of any species—and mastocytemia, a finding more commonly associated with visceral MCTs in cats, further reinforced this preliminary diagnosis.^{3,70}

However, the origin of the circulating granulated cells remains uncertain, particularly due to the cytological similarity between neoplastic GCT cells in this case and mast cells. Although the presence of circulating neoplastic GCT cells could not be definitively excluded, such a phenomenon has not been reported in any species to date. Toluidine blue staining of a blood smear could have aided in distinguishing between circulating neoplastic cells and mastocytemia. However, as no granulated cells were identified on examination of two buffy coat smears stained with May-Grünwald-Giemsa (MGG), toluidine blue staining was not pursued.

Cytological descriptions of GCTs in dogs and horses have identified variably sized, round to polygonal, non-cohesive but occasionally clustered cells, characterized by small eccentric nuclei and abundant granular eosinophilic cytoplasm.^{41,47,49,55-57,71} This description aligns with the cytological appearance observed in the present case but could also correspond to MCT. However, GCT granules are typically finer than those seen in MCTs and those observed in this case. While some reports describe larger or variably sized granules, MCT has never been suggested as a differential diagnosis in GCTs, including in a dog with an intestinal GCT that had a prior auricular grade II MCT resected eight months earlier.^{38,51} Histopathological evaluation was consistent with GCT, though definitive confirmation remains challenging due to the high variability of IHC profiles in cats and other species. Notably, the absence of S-100 expression was unexpected in light of the broader IHC findings. However, NSE-positive and S-100-negative profiles have been documented in canine GCTs.²⁶ Importantly, both histochemical and IHC results were not consistent with typical features of MCT, thereby making a diagnosis of mast cell tumor highly unlikely. Although electron microscopy would have provided additional support for a GCT diagnosis, it was not performed in this case.

In conclusion, this case represents the first reported presumptive malignant granular cell tumor involving the spleen and liver in a cat, although electron microscopy would be valuable to confirm the diagnosis.

References

1. Fanburg-Smith JC, Meis-Kindblom JM, Fante R, Kindblom LG. Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation. *Am J Surg Pathol.* 1998 Jul;22(7):779-94. doi: 10.1097/00000478-199807000-00001. Erratum in: *Am J Surg Pathol* 1999 Jan;23(1):136. PMID: 9669341.
2. Kiupel M. Mast Cell Tumors. In: Meuten DJ. *Tumors in Domestic Animals*, 5th Edition. Ames IA, Wiley Blackwell 2017. pp 195-199.
3. Piviani M, Walton RM, Patel RT. Significance of mastocytemia in cats. *Vet Clin Pathol.* 2013 Mar;42(1):4-10. doi: 10.1111/vcp.12021. Epub 2012 Dec 31. PMID: 23278591.
4. Caswell JL, Williams KJ. Respiratory system. In: Maxie, G. Jubb, Kennedy and Palmer's Pathology of Domestic Animals: Volume 2 – 6th Edition, Elsevier 2015. pp 481-482
5. McEntee MF, Horton S, Blue J, Meuten DJ. Granulated round cell tumor of cats. *Vet Pathol.* 1993 Mar;30(2):195-203. doi: 10.1177/030098589303000213. PMID: 8470340.
6. McPherron MA, Chavkin MJ, Powers BE, Seim HB 3rd. Globule leukocyte tumor involving the small intestine in a cat. *J Am Vet Med Assoc.* 1994 Jan 15;204(2):241-5. PMID: 8144384.
7. Cruz Otero JD, Jager M, Armien AG, Miller A, Stokol T. Granular variant of a histiocytic tumor on the toe of a cat: Case report and literature review. *Vet Clin Pathol.* 2023 Mar;52(1):102-107. doi: 10.1111/vcp.13152. Epub 2022 Jun 24. PMID: 35751153.

8. Tan RM, Singh K, Sandman K. Subcutaneous hemangiosarcoma induced by a foreign body (steel staple) in a cat. *Can Vet J.* 2013 Apr;54(4):377-80. PMID: 24082166; PMCID: PMC3595943.
9. Attipa C, Beck S, Lipscomb V, English K, Carvalho S, Kiupel M, Szladovits B, Peters LM. Aldosterone-producing adrenocortical carcinoma with myxoid differentiation in a cat. *Vet Clin Pathol.* 2018 Dec;47(4):660-664. doi: 10.1111/vcp.12658. Epub 2018 Sep 21. PMID: 30240029.
10. Doughty RW, Brockman D, Neiger R, McKinney L. Nasal oncocytoma in a domestic shorthair cat. *Vet Pathol.* 2006 Sep;43(5):751-4. doi: 10.1354/vp.43-5-751. PMID: 16966454.
11. You MH, Kim YB, Woo GH, Kim JY, Yoon J, Youn HY, Kim DY. Nasopharyngeal oncocytoma in a cat. *J Vet Diagn Invest.* 2011 Mar;23(2):391-4. doi: 10.1177/104063871102300237. PMID: 21398472.
12. Brocks BA, Peeters ME, Kimpfle S. Oncocytoma in the mandibular salivary gland of a cat. *J Feline Med Surg.* 2008 Apr;10(2):188-91. doi: 10.1016/j.jfms.2007.09.004. Epub 2007 Dec 21. PMID: 18160323; PMCID: PMC10911205.
13. Bolfa P, DellaGrotte L, Weronko T, Armien AG. Cutaneous epithelioid hemangiosarcoma with granular cell differentiation in a dog: a case report and review of the literature. *J Vet Diagn Invest.* 2018 Nov;30(6):951-954. doi: 10.1177/1040638718794785. Epub 2018 Aug 23. PMID: 30136913; PMCID: PMC6505848.
14. Asakawa MG, Lewis SM, Buckles EL, Stokol T. What is your diagnosis? Cutaneous mass in a dog. *Vet Clin Pathol.* 2015 Dec;44(4):607-8. doi: 10.1111/vcp.12280. Epub 2015 Aug 19. PMID: 26288379.
15. Brower A, Herold LV, Kirby BM. Canine cardiac mesothelioma with granular cell morphology. *Vet Pathol.* 2006 May;43(3):384-7. doi: 10.1354/vp.43-3-384. PMID: 16672591.
16. Pérez V, Vidal E, González N, Benavides J, Ferreras MC, Villagrasa M, Pumarola M. Orbital meningioma with a granular cell component in a dog, with extracranial metastasis. *J Comp Pathol.* 2005 Aug-Oct;133(2-3):212-7. doi: 10.1016/j.jcpa.2005.02.003. PMID: 16045918.
17. Takeuchi Y, Ohnishi Y, Matsunaga S, Nakayama H, Uetsuka K. Intracranial meningioma with polygonal granular cell appearance in a Chihuahua. *J Vet Med Sci.* 2008 May;70(5):529-32. doi: 10.1292/jvms.70.529. PMID: 18525181.
18. Baratt RM, Rawlinson J, Roth-Johnson L, Jones CJ. Lingual Malignant Peripheral Nerve Sheath Tumor in a Chinese Pug Dog. *J Vet Dent.* 2015 Fall;32(3):165-72. doi: 10.1177/089875641503200303. PMID: 26638295.
19. Dunbar MD, Ginn P, Winter M, Miller KB, Craft W. Laryngeal rhabdomyoma in a dog. *Vet Clin Pathol.* 2012 Dec;41(4):590-3. doi: 10.1111/j.1939-165x.2012.00484.x. Epub 2012 Oct 24. PMID: 23095163.
20. Sample S, Webb JL, Behr M, Shiu KB. What is your diagnosis? Granules galore! *Vet Clin Pathol.* 2015 Mar;44(1):165-6. doi: 10.1111/vcp.12208. Epub 2014 Oct 24. PMID: 25345476.
21. Tan RM, Singh K, Sandman K. Subcutaneous hemangiosarcoma induced by a foreign body (steel staple) in a cat. *Can Vet J.* 2013 Apr;54(4):377-80. PMID: 24082166; PMCID: PMC3595943.
22. Patnaik AK, Erlandson RA, Lieberman PH, Welches CD, Marretta SM. Extra-adrenal pheochromocytoma (paraganglioma) in a cat. *J Am Vet Med Assoc.* 1990 Jul 1;197(1):104-6. PMID: 2370206.
23. Martín de las Mulas J, Espinosa de los Monteros A, Carrasco L, van Niel M, Fernández A. Immunohistochemical distribution pattern of intermediate filament proteins in 50 feline neoplasms. *Vet Pathol.* 1995 Nov;32(6):692-701. doi: 10.1177/030098589503200611. PMID: 8592805.

24. Sabattini S, Giantin M, Barbanera A, Zorro Shahidian L, Dacasto M, Zancanella V, Prata D, Trivigno E, Bettini G. Feline intestinal mast cell tumours: clinicopathological characterisation and KIT mutation analysis. *J Feline Med Surg.* 2016 Apr;18(4):280-9. doi: 10.1177/1098612X15581205. Epub 2015 Apr 27. PMID: 25916685; PMCID: PMC11112255.
25. Wilson DW. Tumors of the respiratory tract. In: Meuten DJ. *Tumors in Domestic Animals*, 5th Edition. Ames IA, Wiley and Sons 2017. pp 495-496.
26. Geyer C, Hafner A, Pfleghaar S, Hermanns W. Immunohistochemical and ultrastructural investigation of granular cell tumours in dog, cat, and horse. *Zentralbl Veterinarmed B.* 1992 Sep;39(7):485-94. doi: 10.1111/j.1439-0450.1992.tb01197.x. PMID: 1455940.
27. Wilson RB, Holscher MA, Casey TT, Berry KK. Tonsillar granular cell tumour in a cat. *J Comp Pathol.* 1989 Jul;101(1):109-12. doi: 10.1016/0021-9975(89)90081-9. PMID: 2794147.
28. Mandara MT, Ricci G, Sforna M. A cerebral granular cell tumor in a cat. *Vet Pathol.* 2006 Sep;43(5):797-800. doi: 10.1354/vp.43-5-797. PMID: 16966466.
29. Valentini A, Canal S, Mandara MT, Balducci F, Bernardini M. Intradural extramedullary granular cell tumour in a cat. *J Small Anim Pract.* 2020 Apr;61(4):259-262. doi: 10.1111/j.sap.12854. Epub 2018 May 10. PMID: 29745421.
30. Patnaik AK. Histologic and immunohistochemical studies of granular cell tumors in seven dogs, three cats, one horse, and one bird. *Vet Pathol.* 1993 Mar;30(2):176-85. doi: 10.1177/030098589303000211. PMID: 8470338.
31. Sutton RH, Coleman GT. A pulmonary granular cell tumour with associated hypertrophic osteopathy in a horse. *N Z Vet J.* 1995 Jan 6;43(3):123. doi: 10.1080/00480169.1995.36544. PMID: 21812745.
32. Pusterla N, Norris AJ, Stacy BA, Smith P, Fielding CL, Moore PF, Watson JL. Granular cell tumours in the lungs of three horses. *Vet Rec.* 2003 Oct 25;153(17):530-2. doi: 10.1136/vr.153.17.530. PMID: 14620554.
33. Scarratt WK, Crisman MV, Sponenberg DP, Dubbin ES, Talley MR, Goodrich L. Pulmonary granular cell tumour in 2 horses. *Equine Vet J.* 1993 May;25(3):244-7. doi: 10.1111/j.2042-3306.1993.tb02954.x. PMID: 8508757.
34. Bouchard PR, Fortna CH, Rowland PH, Lewis RM. An immunohistochemical study of three equine pulmonary granular cell tumors. *Vet Pathol.* 1995 Nov;32(6):730-4. doi: 10.1177/030098589503200620. PMID: 8592814.
35. Heinola T, Heikkilä M, Ruohoniemi M, Sukura A. Hypertrophic pulmonary osteopathy associated with granular cell tumour in a mare. *Vet Rec.* 2001 Sep 8;149(10):307-8. doi: 10.1136/vr.149.10.307. PMID: 11570794.
36. Turk MA, Breeze RG. Histochemical and ultrastructural features of an equine pulmonary granular cell tumour (myoblastoma). *J Comp Pathol.* 1981 Oct;91(4):471-81. doi: 10.1016/0021-9975(81)90075-x. PMID: 6274928.
37. Bulak K, Łopuszyński W, Lutnicki K, Pomorska-Zniszczyńska A, Śmiech A, Jodłowska-Jędrych B. Granular Cell Tumor in a Horse: Multifocal Pulmonary Distribution and Evidence of Autophagy in Tumorigenesis. *J Equine Vet Sci.* 2019 Aug;79:23-29. doi: 10.1016/j.jevs.2019.05.010. Epub 2019 May 16. PMID: 31405495.
38. Riis RC, Rebhun WC. Proliferative optic neuropathy in a horse caused by a granular cell tumour. *Equine Vet J Suppl.* 1990 Sep;(10):69-72. doi: 10.1111/j.2042-3306.1990.tb04716.x. PMID: 9079122.

39. Goodchild LM, Dart AJ, Collins MB, Hodgson DR. Granular cell tumour in the bronchus of a horse. *Aust Vet J.* 1997 Jan;75(1):16-8. doi: 10.1111/j.1751-0813.1997.tb13819.x. PMID: 9034490.
40. Maeda K, Wada S, Shimaoka C, Iwai S, Okano S. Granular cell tumor of the brachial nerve in a dog: A case report. *Braz J Vet Med.* 2024 May 28;46:e001424. doi: 10.29374/2527-2179.bjvm001424. PMID: 38840782; PMCID: PMC11152060.
41. Barnhart KF, Edwards JF, Storts RW. Symptomatic granular cell tumor involving the pituitary gland in a dog: a case report and review of the literature. *Vet Pathol.* 2001 May;38(3):332-6. doi: 10.1354/vp.38-3-332. PMID: 11355666.
42. Rallis TS, Tontis DK, Soubasis NH, Patsiaura KK, Papazoglou LG, Adamama-Moraitou KK. Immunohistochemical study of a granular cell tumor on the tongue of a dog. *Vet Clin Pathol.* 2001;30(2):62-66. doi: 10.1111/j.1939-165x.2001.tb00260.x. PMID: 12024318.
43. Lu JE, Dubielzig R. Canine eyelid granular cell tumor: a report of eight cases. *Vet Ophthalmol.* 2012 Nov;15(6):406-10. doi: 10.1111/j.1463-5224.2012.01001.x. Epub 2012 Feb 23. PMID: 22360764.
44. Sanford SE, Hoover DM, Miller RB. Primary cardiac granular cell tumor in a dog. *Vet Pathol.* 1984 Sep;21(5):489-94. doi: 10.1177/030098588402100506. PMID: 6091314.
45. Foley GL. Intrathoracic granular cell tumour in a dog. *J Comp Pathol.* 1988 May;98(4):481-7. doi: 10.1016/0021-9975(88)90096-5. PMID: 3417916.
46. Liu CH, Liu CI, Liang SL, Cheng CH, Huang SC, Lee CC, Hsu WC, Lin YC. Intracranial granular cell tumor in a dog. *J Vet Med Sci.* 2004 Jan;66(1):77-9. doi: 10.1292/jvms.66.77. PMID: 14960817.
47. Mishra S, Kent M, Haley A, Platt S, Sakamoto K. Atypical meningeal granular cell tumor in a dog. *J Vet Diagn Invest.* 2012 Jan;24(1):192-7. doi: 10.1177/1040638711425942. Epub 2011 Dec 6. PMID: 22362953.
48. Rao D, Rylander H, Drees R, Schwarz T, Steinberg H. Granular cell tumor in a lumbar spinal nerve of a dog. *J Vet Diagn Invest.* 2010 Jul;22(4):638-42. doi: 10.1177/104063871002200425. PMID: 20622241.
49. Rossi G, Tarantino C, Taccini E, Renzoni G, Magi GE, Bottero E. Granular cell tumour affecting the left vocal cord in a dog. *J Comp Pathol.* 2007 Jan;136(1):74-8. doi: 10.1016/j.jcpa.2006.10.003. Epub 2007 Jan 26. PMID: 17258228.
50. Higgins RJ, LeCouteur RA, Vernau KM, Sturges BK, Obradovich JE, Bollen AW. Granular cell tumor of the canine central nervous system: two cases. *Vet Pathol.* 2001 Nov;38(6):620-7. doi: 10.1354/vp.38-6-620. PMID: 11732794.
51. Ororbia A, Sanz A, Novellas R, Pastor J, Pumarola M, Fresno L, Espada Y. Diagnostic imaging and pathological findings of an abdominal mesenteric granular cell tumour in a dog. *Vet Med Sci.* 2021 Sep;7(5):1514-1517. doi: 10.1002/vms3.543. Epub 2021 May 22. PMID: 34021730; PMCID: PMC8464256.
52. Saito R, Chambers JK, Uchida K. Immunohistochemical study of autophagy associated molecules and cell adhesion molecules in canine intracranial granular cell tumors. *J Vet Med Sci.* 2022 Nov 1;84(11):1474-1479. doi: 10.1292/jvms.22-0359. Epub 2022 Sep 21. PMID: 36130881; PMCID: PMC9705816.
53. Mayor C, Verdés J, Alomar J, Novellas R, Pumarola M, Añor S. Intracranial Granular Cell Tumours in Three Dogs: Atypical Magnetic Resonance Imaging Features and Immunohistochemical Study. *Vet Sci.* 2023 Feb 9;10(2):134. doi: 10.3390/vetsci10020134. PMID: 36851438; PMCID: PMC9962801.

54. Montoliu P, Vidal E, Pumarola M, Añor S. Granular cell tumour in the spine of a dog. *Vet Rec*. 2006 Feb 4;158(5):168-70. doi: 10.1136/vr.158.5.168. PMID: 16461626.
55. Levitin HA, Foss KD, Hague DW, Connolly SL, Vieson M, Wycislo KL, Lezmi S, Lovett MC. The utility of intraoperative impression smear cytology of intracranial granular cell tumors: Three cases. *Vet Clin Pathol*. 2019 Jun;48(2):282-286. doi: 10.1111/vcp.12732. Epub 2019 May 6. PMID: 31062410.
56. Spoor MS, Kim DY, Kanazono S, Wininger FA, Whitney MS. What is your diagnosis? Impression smears of a cerebral mass from a dog. *Vet Clin Pathol*. 2013 Jun;42(2):240-1. doi: 10.1111/vcp.12026. Epub 2013 Feb 21. PMID: 23432620.
57. Sharkey LC, McDonnell JJ, Alroy J. Cytology of a mass on the meningeal surface of the left brain in a dog. *Vet Clin Pathol*. 2004;33(2):111-4. doi: 10.1111/j.1939-165x.2004.tb00358.x. PMID: 15195271.
58. Anwer CC, Vernau KM, Higgins RJ, Dickinson PJ, Sturges BK, LeCouteur RA, Bentley RT, Wisner ER. Magnetic resonance imaging features of intracranial granular cell tumors in six dogs. *Vet Radiol Ultrasound*. 2013 May-Jun;54(3):271-7. doi: 10.1111/vru.12027. Epub 2013 Mar 25. PMID: 23521525.
59. Finnegan DK, Cartoceti AN, Hauck AM, LaDouceur EEB. Meningeal Granular Cell Tumour in a Green Tree Python (*Morelia viridis*). *J Comp Pathol*. 2020 Jan;174:54-57. doi: 10.1016/j.jcpa.2019.10.190. Epub 2019 Nov 30. PMID: 31955803.
60. Reifinger M, Dinhopl N, Gumpenberger M, Konecny M, Cigler P. Granular Cell Tumour in a California Kingsnake (*Lampropeltis californiae*). *J Comp Pathol*. 2020 Feb;175:24-28. doi: 10.1016/j.jcpa.2019.11.003. Epub 2020 Jan 14. PMID: 32138839.
61. Sandusky GE Jr, Carlton WW, Wightman KA. Immunohistochemical staining for S100 protein in the diagnosis of canine amelanotic melanoma. *Vet Pathol*. 1985 Nov;22(6):577-81. doi: 10.1177/030098588502200611. PMID: 2417399.
62. Johnson TO, Schulman FY, Lipscomb TP, Yantis LD. Histopathology and biologic behavior of pleomorphic cutaneous mast cell tumors in fifteen cats. *Vet Pathol*. 2002 Jul;39(4):452-7. doi: 10.1354/vp.39-4-452. PMID: 12126148.
63. Rabanal RH, Fondevila DM, Montané V, Domingo M, Ferrer L. Immunocytochemical diagnosis of skin tumours of the dog with special reference to undifferentiated types. *Res Vet Sci*. 1989 Jul;47(1):129-33. PMID: 2475897.
64. Garner FM, Lingeman CH. Mast-cell neoplasms of the domestic cat. *Pathol Vet*. 1970;7(6):517-30. doi: 10.1177/030098587000700607. PMID: 5001798.
65. Cooper BJ, Valentine BA. Muscle and tendon. In: Maxie, G. Jubb, Kennedy and Palmer's Pathology of Domestic Animals: Volume 1 – 6th Edition, Elsevier 2015. pp 340-346
66. Suzuki S, Uchida K, Harada T, Nibe K, Yamashita M, Ono K, Nakayama H. The origin and role of autophagy in the formation of cytoplasmic granules in canine lingual granular cell tumors. *Vet Pathol*. 2015 May;52(3):456-64. doi: 10.1177/0300985814546051. Epub 2014 Aug 26. PMID: 25161210.
67. Di Tommaso L, Magrini E, Consales A, Poppi M, Pasquinelli G, Dorji T, Benedetti G, Baccarini P. Malignant granular cell tumor of the lateral femoral cutaneous nerve: report of a case with cytogenetic analysis. *Hum Pathol*. 2002 Dec;33(12):1237-40. doi: 10.1053/hupa.2002.129207. PMID: 12514794.
68. Park SH, Kim TJ, Chi JG. Congenital granular cell tumor with systemic involvement. Immunohistochemical and ultrastructural study. *Arch Pathol Lab Med*. 1991 Sep;115(9):934-8. PMID: 1929790.

69. Gleason-Jordan IO, Mirra JM, Mahendra T, Pathmarajah C. Case report 676: Malignant granular cell tumor (schwannoma, myoblastoma), disseminated. *Skeletal Radiol.* 1991;20(7):529-32. doi: 10.1007/BF00194253. PMID: 1754915.
70. Raskin RE. Hemolymphatic system. In: Raskin R, Meyer DJ, Boes KM. *Canine and feline cytopathology: a color atlas and interpretation guide*, fourth edition. Elsevier 2023. pp 124-181.
71. Hostetter SJ. Oral Cavity, Gastrointestinal Tract, and Associated Structures. In: Raskin R, Meyer DJ, Boes KM. *Canine and feline cytopathology: a color atlas and interpretation guide*, fourth edition. Elsevier 2023. pp 292-297